A new joint spectral radius analysis of random PSO algorithm

نویسندگان

  • Jun Liu
  • Hongbin Ma
  • Xuemei Ren
  • Tianyun Shi
  • Ping Li
چکیده

The existing stability analysis of particle swarm optimization (PSO) algorithm is chiefly concluded by the assumption of constant transfer matrix or time-varying random transfer matrix. Firstly, one counterexample is provided to show that the existing convergence analysis is not possibly valid for PSO system involving random variables. Secondly, the joint spectral radius, mainly calculated by the maximum eigenvalue of the product of all asymmetric random transfer matrices, is introduced to analyze and discuss convergence condition and convergence rate from numerical viewpoint with the aid of Monte Carlo method. Numerical results show that there is one major discrepancy between some preview convergence results and our corresponding results, helping us to deeply understand the tradeoff between exploration ability and exploitation ability as well as providing certain guideline for parameter selection.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Joint and Generalized Spectral Radius of Upper Triangular Matrices with Entries in a Unital Banach Algebra

In this paper, we discuss some properties of joint spectral {radius(jsr)} and  generalized spectral radius(gsr)  for a finite set of upper triangular matrices with entries in a Banach algebra and represent relation between geometric and joint/generalized spectral radius. Some of these are in scalar matrices, but  some are different. For example for a bounded set of scalar matrices,$Sigma$, $r_*...

متن کامل

Cartesian decomposition of matrices and some norm inequalities

Let ‎X be an ‎‎n-‎‎‎‎‎‎square complex matrix with the ‎Cartesian decomposition ‎‎X = A + i ‎B‎‎‎‎‎, ‎where ‎‎A ‎and ‎‎B ‎are ‎‎‎n ‎‎times n‎ ‎Hermitian ‎matrices. ‎It ‎is ‎known ‎that ‎‎$Vert X Vert_p^2 ‎leq 2(Vert A Vert_p^2 + Vert B Vert_p^2)‎‎‎$, ‎where ‎‎$‎p ‎‎geq 2‎$‎ ‎and ‎‎$‎‎Vert . Vert_p$ ‎is ‎the ‎Schatten ‎‎‎‎p-norm.‎ ‎‎ ‎‎In this paper‎, this inequality and some of its improvements ...

متن کامل

Population Scalability Analysis of Abstract Population-based Random Search: I. Spectral Radius

Population-based Random Search (RS) algorithms, such as Evolutionary Algorithms (EAs), Ant Colony Optimization (ACO), Artificial Immune Systems (AIS) and Particle Swarm Optimization (PSO), have been widely applied to solving discrete optimization problems. A common belief in this area is that the performance of a population-based RS algorithm may improve if increasing its population size. The t...

متن کامل

استفاده از یک روش ترکیبی PSO – GA جهت جایابی بهینه خازن در سیستمهای توزیع

In this paper, we have proposed a new algorithm which combines PSO and GA in such a way that the new algorithm is more effective and efficient.The particle swarm optimization (PSO) algorithm has shown rapid convergence during the initial stages of a global search but around global optimum, the search process will become very slow. On the other hand, genetic algorithm is very sensitive to the in...

متن کامل

Using a combination of genetic algorithm and particle swarm optimization algorithm for GEMTIP modeling of spectral-induced polarization data

The generalized effective-medium theory of induced polarization (GEMTIP) is a newly developed relaxation model that incorporates the petro-physical and structural characteristics of polarizable rocks in the grain/porous scale to model their complex resistivity/conductivity spectra. The inversion of the GEMTIP relaxation model parameter from spectral-induced polarization data is a challenging is...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Int. J. Computational Intelligence Systems

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2014